

Amberg Tamping IMS 1000 / 3000

Die schnellsten Vormesssysteme für den präzisen Gleisbau

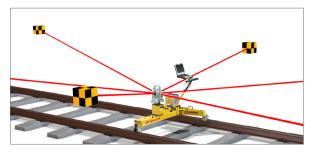
Revolution eines Messprinzips

- Bewährtes VMS-Messprinzip (Langsehnenverfahren) mit nur einem Messwagen
- Kombinierte Vermessung der relativen und absoluten Gleisgeometrie in einem Messdurchgang
- Genauigkeit der Absolutposition bis zu I mm
- Unerreichte Messleistung von bis zu 4000 m/h
- Bedienung ohne geodätische Vorkenntnisse
- Sicherer Transfer der Stopfmaschinendaten in verschiedenen Export-Formaten
- Kostenreduktion bis zu 90 % gegenüber konventionellen Methoden

- Messwagen mit Präzisionssensoren für Spurweite, Überhöhung und Wegmessung sowie robustem Notebook
- AMU 2010/2020/2030 (Amberg Measuring Unit) für unerreichte Präzision im kinematischen Messmodus
- Zwei Festpunkt (FP)-Messgeräte zur Auswahl:
- Tachymeter (IMS 1000): Einzel- und Multi-FP Modus
- Profiler 120 FX (IMS 3000): Einzel-FP Modus
- System modular erweiterbar
- Einfache Handhabung und leicht transportierbar
- LED-Beleuchtung für sicheres Arbeiten in der Nacht
- Robuste Hardware für anspruchsvolle Umgebungsbedingungen

Vorne: Amberg IMS 1000 mit Tachymeter Hinten: Profiler 120 FX für Amberg IMS 3000

Einzel-Festpunkt Modus


- Hochleistung für längere Streckenabschnitte
- Ideal für Messungen während kurzer Sperrzeiten
- Messleistung bis zu 4000 m/h, typisch 2500 m/h
- Distanz zwischen FP-Messungen bis zu 500 m
- Vollautomatische relative FP-Messung mit IMS 1000
- Kein Genauigkeitsverlust durch Refraktion
- Keine Sichtverbindung notwendig

Einzel-FP Modus mit Amberg IMS 3000 oder IMS 1000

Multi-Festpunkt Modus

- Für höchste Genauigkeitsanforderungen
- Tachymeter-Setup mit mehreren FP gewährleistet höchste Genauigkeit und Zuverlässigkeit
- Tachymeter-Setup komplett mit Amberg Rail Software
- Messleistung bis zu 1500 m/h, typisch 1000 m/h
- Distanz zwischen Tachymeter-Setups bis zu 500 m
- Erhöhte Leistung ohne Horizontierung des Tachymeters
- Minimierung möglicher FP-Fehler

Multi-FP Modus mit Amberg IMS 1000

© 2021/02 Amberg Technologies AG / Abbildungen, Beschreibungen und technische Daten unverbindlich. Änderungen vorbehalten.

Amberg Tamping IMS 1000 / 3000

Systemleistungen und Technische Daten

Systemkonfiguration				
Normalspurweite (mm)	1000, 1067, 1435, 1520/24,			
	1600, 1668/76			
Spurweitenmessbereich (mm)	-25 to +65			
(für Normalspurweite)				
Überhöhung bei 1435 mm	+/- 260			
(mm)				
KP Messgerät	Leica Amberg			erg
	Tachymeter Profiler		iler	
	MS50/60, 120 FX		FX	
	TS50/60,TS30,			
	TS15/16			
Gewicht kpl. System (kg)	45	43		
inkl. Batterien, Notebook, alle				
Messgeräte				
Systemleistung				
Systemieistung	IMS 1000 IMS 3000			
FP Modus	Einzel	Multi		Einzel
Typische Messgeschw. (m/h)	2500	1000		2500
Max. Messgeschw. (m/h)	4000	1500		4000
Systemgenauigkeit				
Gleislage und -höhe (mm) 2)	+/- 2	+/-		+/- 3
Überhöhung (mm)	+/- 0.5	+/- 0.5		+/- 0.5
Spurweite (mm)	+/- 0.3	+/- 0.3		+/- 0.3
FP Messung (mm)	+/-	+/-		+/- 3
relativ zur Gleisachse				
AMU Modelle				
		A		
Wiederholgenauigkeit bei 60m KP Intervall (mm)	+/-	+,	/- 2	+/- 3
Wiederholgenauigkeit bei 120m KP Intervall (mm)	+/- 2	+/- 4		+/- 6
Wiederholgenauigkeit bei 300m KP Intervall (mm)	+/- 5	+/	- 12	+/- 20

¹⁾ Typische Erfahrungswerte, die abhängig von den Projektbedingungen variieren können.

Arbeitsumgebung			
Arbeitsunigebung	IMS 1000 / IMS 3000		
Einsatztemperaturbereich	- 10° C to +50° C		
Feuchtigkeit	< 80 %		
(nicht kondensierend)			
Stopfdaten			
Aufbereitungsdauer der Stopf-	< 15 min / 500 m		
maschinendaten (Berechnung			
der Korrekturdaten inkl. Ram-			
pendefinition)			
Stopfdatenformate	Plasser WinALC, ALC		
	CGV5		
	Framafer BAO3		
	Matisa		
	Harsco		
Systemzulassungen			
CE Konformität	EN 61326-1:2013		
	EN 61000-6-2:2005		
	EN 61000-6-4:2007/A1:2011		
	EN 60825-1:2014		
	EN 13848-4		
	EN 13977:2011		
	Richtlinie 2014/30/EU		
	Richtlinie 2014/35/EU		
	Richtlinie 2011/65/EU		
GRP System FX Zulassungen	Network Rail / London Under-		
von	ground (UK), Deutsche Bahn		
	(DE), SBB (CH), SNCF (FR),		
	ÖBB (AT), RFI (IT), Adif (ES),		
	ProRail (NL), Infrabel (BE)		
Referenzauszug			

Die Amberg Gleismesssysteme konnten ihre hohe Leistungsfähigkeit weltweit nachweisen. Anspruchsvolle Projekte wurden

²⁾ Abhängig u.a. von Messlänge, Festpunktgüte, Positionierungssensor, Projektbedingungen und verwendetem AMU Modell.

realisiert u.a. in Deutschland, Österreich, Belgien, Niederlande, Dänemark, Frankreich, Italien, Spanien, Griechenland, Türkei, Australien, UK, Saudi-Arabien, VAE, Korea, USA, VR China.