

VERMESSUNGSGENAUE PRÄZISION BEI MAXIMALER EFFIZIENZ

Das Amberg Tamping IMS-System vereint die Präzision geodätischer Vermessung mit der Geschwindigkeit kontinuierlicher, IMU-gestützter Datenerfassung. Es ersetzt wiederholte Totalstation-Setups und optimiert Vor- und Nachstopfprozesse durch schnelle Analysen, Korrekturdatenexporte und zuverlässige Verifikationen.

Hardware-Konfigurationen

- IMS 1000: Totalstation + IMU auf Messwagen. Absolute Positionierung über integrierte Totalstation mit kontinuierlicher Gleistrajektorienaufzeichnung durch die IMU
- **IMS 3000:** Profiler FX + IMU auf Messwagen. Absolute Positionierung über laterale Einzelpunktmessung mit dem Profiler FX
- Optionale GNSS-Einheit: Für erste Stopfgänge, wenn maximale Genauigkeit nicht erforderlich ist

Profiler FX-Funktionen (IMS 3000)

- Laterale Einzelpunktmessung zur Nachstopfverifikation
- Messung seitlicher Objekte
- Querschnittserfassung
- Lichtraumanalyse über das Amberg Rail Clearance-Modul

Workflow vor dem Stopfen

- IMS 1000: Absolute Positionierung über Mehrpunktmessung, laterale Einzelpunktmessung oder GNSS
- IMS 3000: Absolute Positionierung über laterale Einzelpunktmessung oder GNSS
- Kontinuierliche Gleisgeometrieerfassung mit IMU
- Export von Korrekturdaten für Plasser, Matisa, Framafer, Harsco und weitere Stopfmaschinen

Workflow nach dem Stopfen

- Absolute Positionierung über Einzel- oder Mehrpunktmessung
- IMU-gestützte Erfassung der Gleisgeometrie
- Verifikation und Erstellung von Abnahmeberichten

Amberg Rail - Tamping-Modul

- Integriertes Projektmanagement mit Projektdaten, Vermessung und Stopfparametern
- Effiziente, benutzergeführte Abläufe mit Echtzeit-Anzeige
- Automatisierte Datenverarbeitung mit grafischer Auswertung
- Direkter Export von Korrekturdaten
- Umfassende Berichte für Tamping-Anwendungen

Telefon +41 44 870 92 22 info@amberg.ch ambergtechnologies.com

SYSTEMLEISTUNGEN UND TECHNISCHE DATEN

System (1) (2)	11.45.4000	11.45.2005
	IMS 1000	IMS 3000
Spurweite [mm]		
	1495, 1520/1524, 160	
Festpunkt-Messgerät	Totalstation auf	Amberg
	Messwagen	Profiler
		120 FX
Gewicht [kg]	43.5	40.9
(bei 1435 mm Spurweite,		
AMU 2030)		
Spurweitenmessung		
Messbereich [mm]	-25 bis +65	
(bezogen auf Nominalspur-		
weiten)		
Genauigkeit [mm]	±0.3	
Überhöhungsmessung		
Messbereich [mm], (bei	±260	
1435 mm Spurweite, Bere-		
ich ±10°)		
Genauigkeit [mm]	±0.5	
Gleislagenmessung		
Gleislagegenauigkeit [mm]	Einzel-FP: ±2	Einzel-FP: ±3
	Mehrfach-FP: ±1	
Gleislagegenauigkeit mit	Horizontale Position:	±20
GNSS-Empfänger [mm]	Höhe: ±40	
Trolley-Akku		
Тур	Amberg GBS 3010 Li-	lon, wieder-
	aufladbar	
Betriebsdauer [h]	>8	
Feldcomputer-Akku		
Тур	Kompatibel mit Panasonic FZ-G2	
Betriebsdauer [h]	>4	
Umgebungsbedingungen		
Betriebstemperaturbereich [°C]	-10 bis +50	
Luftfeuchtigkeit [%]	<80	
(nicht kondensierend)		

Leistungsdaten (1)		
	IMS 1000	IMS 3000
Typische Messgeschwindigkeit [m/h]	Einzel-FP: 2500 Mehrfach-FP: 1000	Einzel-FP: 2500
Maximale Messgeschwindigkeit [m/h], (bei FP-Intervall: 60 m)	Einzel-FP: 4000 Mehrfach-FP: 1500	Einzel-FP: 4000

AMU Modelle			
Wiederholgenauigkeit bei:	1030P	2030	2010
FP-Intervall: 60 m [mm]	±0.8	±1	±3
FP-Intervall: 120 m [mm]	±1.5	±2	±6
FP-Intervall: 300 m [mm]	±3	±5	±20

Amberg Profiler 120 FX (2)	
Messbereich [m]	<30
Distanzmessgenauigkeit bei	1
5 m [mm]	

Positionierungssensoren			
	Leica	Topcon	Sokkia
Totalstation (≤1")	TS15/16/30/ 50/60, MS50/60	GT-1200, MS AXII	iX-1200, NET AXII
Prisma	Rund, Mini, 360, 360 Mini, Mini Zero, Tape	Prisma-2 mit Kip Nr.: 724806	ophalter
GNSS- Empfänger	GPS1200, GS10/14/15/ 16/18	HiPer VR	GRX3

Stopfarbeiten	
Typische Gleisanwendungen	Neubau, Sanierung, Erneuerung, Instandhaltung, nur Stopfarbei- ten
Gleisart	Freies Gleis, Weichensysteme (inkl. Spurerweiterung, z.B. FAKOP®)
Vorbereitung der Stopfdaten (Berechnung der Korrektur- daten inkl. Rampen)	<10 min pro 500 m
Stopfdatenformate (weitere Formate auf Anfrage)	Plasser WinALC, DosALC, AGGS, CGV5, Framafer BAO3, Matisa, Harsco

Systemzulassungen

CE-Konformität

EN 61326-1:2013, EN 61000-6-2:2005, EN 61000-6-4:2007/A1:2011, EN 60825-1:2014, EN 13848-4, EN 13977:2011, Richtlinien 2014/30/ EU, Richtlinien 2014/35/EU, Richtlinien 2011/65/EU

GRP System FX-Zulassungen von

Network Rail / London Underground (UK), Deutsche Bahn (DE), SBB (CH), SNCF (FR), ÖBB (AT), RFI (IT), Adif (ES), ProRail (NL), Infrabel (BE)

- Die typische Leistungsfähigkeit kann je nach Projektbedingungen variieren.
 Die Ergebnisse h\u00e4ngen von Faktoren wie der Dichte und Qualit\u00e4t der Festpunkte sowie den allgemeinen Projektbedingungen ab.

