

Amberg Tamping VMS 3000

The long-chord track survey system for demanding track works

Innovation of a proven principle for track works

- Long chord method
- Combined survey of track and lateral distance offsets in one run
- Absolute accuracy 3 mm
- Greatest operational flexibility thanks to twin-trolley mode and tripod mode option
- Integrated fixed-point measuring device

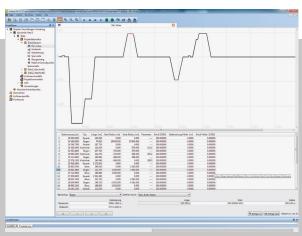
- Cost savings of 70% and more compared to manual / optical chord methods
- Safe digital data handling from initial data input to final transfer of correction data
- Easy handling and flexible transportation

High performance for long track sections – twin-trolley mode

- 1st Choice for measurements during track closures
- Measuring performance of up to 2300 m/h
- \blacksquare Length of reference chord of up to 250 m
- Measuring system GRP 3000 consisting of precision sensors for gauge, superelevation and distance, Profiler 120 FX with prism and ruggedized notebook
- Measuring system GRP TSC with automatic tripod for quick and easy self-levelling of tachymeter
- LED lightening bar assuring safe work during night
- User friendly handling specially designed for track workers

Greatest flexibility under demanding project conditions – tripod mode

- Ideal for short track sections, e.g. turnouts, multi-track sections and projects with limited track access
- \blacksquare Length of reference chord of up to 400 m
- Measuring system GRP 3000
- Tachymeter on tripod (with automatic self-levelling tribrach)
- Flexible measuring mode as twin-trolley mode complemented by Flex-Stop functionality
- Immediate measurement stop for rapid track clearance on demand – without impact on performance
- Modular system design allows upgrading at any time e.g.2nd trolley and other survey applications

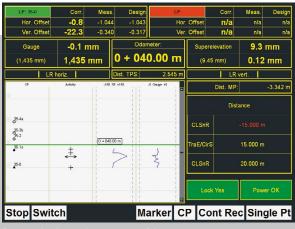


Easy to use, fully controlled, highly efficient – From preparation through to evaluation

Project data management

Simple and quick project data management

- Project setup and track data definition in only a few steps
- Smart input of track data coming from track layout plan or other analogue document
- Direct import of digital alignment data
- Data base model assures immediate access to data input, management and reporting
- Various interfaces for design data transfer
- Integrated track point calculator



Project data input – intuitive, safe, efficient

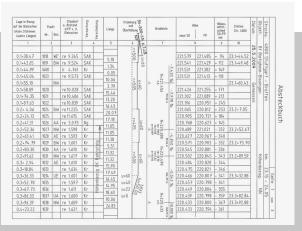
Measurement

Tamping surveying with highest efficiency

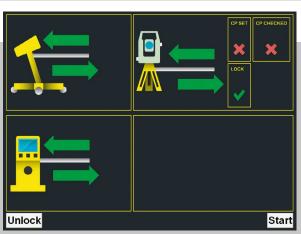
- Easy measuring process supported by big control screen for complete overview and control at any time
- Track and lateral distance offset survey in one run
- Real-time display of relevant track data
- Kinematic measuring mode
- Single point shots incl. code and note function for relevant track objects (e.g. synchro point, frog)
- Control point measurement including tie-distance control
- Different operation mode for optimal utilisation during complete track possession or short access windows

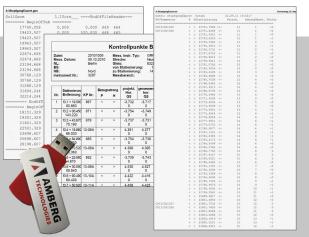


Screen display – clear, meaningful, ergonomic

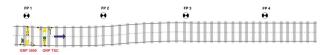

Evaluation

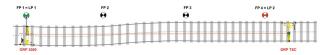
Automatic evaluation and correction data calculation


- Automatic linking and analysis of measuring sequence
- Clear display of results of actual / nominal track comparison
- Comprehensive evaluation tool for determination of correction values, lift and slue (shift), including ramping, check of possible ramp slope, maximum lift and slue correction
- Actual / nominal fixed-point check
- Comprehensive documentation and export of results including tamping data files
- Lift & slue report for machine driver


Graphical data analysis – all details at al glance

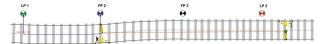
Doesn't mind whether it is analogue or digital project data


Clear structured survey process – the key for highest productivity

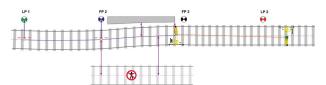

Numerous output options – from printout through to digital data

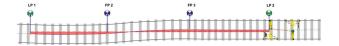
Innovation of a proven principle for track works: The VMS long chord method

Twin-Trolley Mode

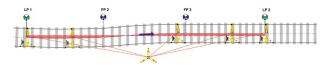


GRPTSC trolley moves to the end of the first section. Preparing the laser tachymeter within seconds by pushing one button.




Start of chord measurement: Initial lift and slue calculation at fixed point LP I with GRP 3000

Kinematic track recording at walking speed. Survey of synchro points, other POI and additional fixed-point measurements possible at any time.



Optional: Non-contact measurement of parallel track distance, platform offset or position of contact wire.

Complete actual/nominal comparison at the end of the measuring section.

Tripod Mode

Identical sequence of operation for tripod mode – combined with higher flexibility for track access and high productivity at turnouts and multi-track sections.

© 2021/05 Amberg Technologies AG / Figures, descriptions and specifications are non-binding. Subject to change.

Amberg Tamping VMS 3000

System performance and technical data

Systemkonfiguration		
System configuration	1000, 1067, 1435, 1520/24,	
	1600, 1668/76	
Amberg GRP 3000		
Gauge measuring range	-25 to +65 mm	
• for nominal gauges	20 00 00 11111	
Cross level (cant)	+/- 260 mm	
= at 1435 mm		
Fixed-point measuring device		
Fixed-point distance	< 20 m	
Weight	30 kg	
incl. computer, batteries		
Amberg GRPTSC		
Self-levelling tribrach	< 5 s	
• time		
Weight	33 kg	
incl. total station, batteries		
Total station		
Leica total station	TS15/16,TS30,TS50/60,	
motorized, ATR	MS50/60	
radio modem		
System accuracy	• 1 1	
Survey of track position and h		
Stop & Go mode	+/- I mm	
Kinematic mode	+/- 3 mm	
Crosslevel		
Stop & Go mode	+/- 0.5 mm	
Kinematic mode	+/- I mm	
Fixed-point measurement	+/- 3 mm	
relative to track axis		
at 5 m distance		
Measuring frequency		
Track geometry		
3D track position, gauge, crosslevel		
Stop & Go	< 5 s / measurement	
Kinematic	< 7 measurements / s	

Environmental specificati	-10° to +50°
Working temperatur range	
Humidity non-condensing	<80%
Typical performance	
Twin-trolley mode	1000–2300 m/h
Tripod mode	700–1100 m/h
Tamping data (lift & slue)	
Tamping data preparation Correction data calculation incl. ramping	< 15 min/500 m
Tamping data formats	Plasser WinALC, ALC CGV5
	Framafer BAO3
	Matisa
System approvals	
CE Conformity	EN 61326-1:2013
	EN 61000-6-2:2005
	EN 61000-6-4:2007/A1:2011
	EN 60825-1:2014
	EN 13977:2011
	Directives 2014/30/EU
	Directives 2014/35/EU
	Directives 2011/65/EU
GRP System FX	Network Rail / London Under
approvals from	ground (UK), Deutsche Bah
approvais iroiii	(DE), SBB (CH), SNCF (FR
	ÖBB (AT), RFI (IT), Adif (ES
	ProRail (NL), Infrabel (BE)

¹⁾ Depending on e.g. chord length, atmospheric conditions, control point quality, positioning sensor and project conditions.

Amberg's railway surveying solutions have proven their high performance all over the world. Demanding projects have been successfully realised in e.g. Germany, Austria, Belgium, the Netherlands, Denmark, France, Italy, Spain, Greece, Turkey, Australia, United Kingdom, Saudi Arabia, UAE, Korea, USA, PR China.

